Data-agnostic genetic admixture estimation for bioCADDIE indexed cohorts

O. Harismendy, PhD
Overview

• Rationale
 – Human subject cohorts lack racial/ethnical diversity
 – Meta-Data relies on self-reported race and ethnicity
 – Molecular data (SNP, Genome, Exome or RNA sequence) can be used to determine ancestry and quantify admixture

• Goal:
 – Include a diversity score for multiple cohorts indexed by BioCADDIE-DataMed search index

• Potential Impact/utility
 – facilitate sample and cohort selection for secondary research
 – monitor the diversity of publically available datasets
 – identify underserved study areas and populations
Lack of diversity

75% of GWAS (<2010) are performed in European

Rosenberg et al (2010)
HCM misdiagnosis

Penetrance in black would be <1%

Manrai et al (2016)
Simulations showed that the inclusion of even small numbers of black Americans in control cohorts probably would have prevented these misclassifications.

Manrai et al (2016)
Chemotherapy toxicity

<table>
<thead>
<tr>
<th>Drug (Class)</th>
<th>SNP</th>
<th>Toxicity</th>
<th>Study Population</th>
<th>Gene</th>
<th>Location (GRCh38.p7)</th>
<th>MAF by Population (HapMap)</th>
<th>Refeence</th>
</tr>
</thead>
<tbody>
<tr>
<td>thiopurine (antimetabolite)</td>
<td>rs79206939</td>
<td>myelosuppression</td>
<td>East Asian (Korea)</td>
<td>FTO</td>
<td>16:53826140</td>
<td>2.8* 0 0</td>
<td>(52)</td>
</tr>
<tr>
<td>5-FU/FOLFOX</td>
<td>rs16857540</td>
<td>myelosuppression</td>
<td>European (Spain)</td>
<td>NLGN1</td>
<td>3:174182785</td>
<td>0 37.2 15.3</td>
<td>(55)</td>
</tr>
<tr>
<td>cis/carboplatin</td>
<td>rs2838566</td>
<td>hepatotoxicity</td>
<td>East Asian (China)</td>
<td>intergenic</td>
<td>21:44468699</td>
<td>7.1 33 0</td>
<td>(61)</td>
</tr>
<tr>
<td>paclitaxel + epi. (taxane)</td>
<td>rs9501929</td>
<td>neuropathy</td>
<td>European (USA)</td>
<td>TUBB2A</td>
<td>6:3157620</td>
<td>0 28.6 4.7</td>
<td>(59)</td>
</tr>
<tr>
<td>epi/doxo (anthracyclin)</td>
<td>rs229774</td>
<td>cardiotoxicity</td>
<td>diverse (Canada)</td>
<td>RARG</td>
<td>14:83435125</td>
<td>0 11.1 6.6</td>
<td>(64)</td>
</tr>
<tr>
<td>melphalan (alkylating)</td>
<td>rs1469167</td>
<td>oral mucositis</td>
<td>European (USA)</td>
<td>ALDH1A1</td>
<td>9:72942091</td>
<td>0 31.4 2.7</td>
<td>(72)</td>
</tr>
<tr>
<td>epirubicin (anthracyclin)</td>
<td>rs4149639</td>
<td>myelosuppression</td>
<td>East Asian (Japan)</td>
<td>TNFRSF1A</td>
<td>12:6332835</td>
<td>11.4 22 0</td>
<td>(63)</td>
</tr>
<tr>
<td>docetaxel (taxane)</td>
<td>rs3747851</td>
<td>myelosuppression</td>
<td>East Asian (Japan)</td>
<td>DAB2IP</td>
<td>9:121758981</td>
<td>0 15.1 0.4</td>
<td>(63)</td>
</tr>
<tr>
<td>docetaxel (taxane)</td>
<td>rs875858</td>
<td>neuropathy</td>
<td>European (USA)</td>
<td>VAC14</td>
<td>16:70741552</td>
<td>0 0 7.5</td>
<td>(58)</td>
</tr>
<tr>
<td>paclitaxel (taxane)</td>
<td>rs17348202</td>
<td>neuropathy</td>
<td>European (USA)</td>
<td>EPHA4</td>
<td>2:221207458</td>
<td>0 17.7 5.8</td>
<td>(60)</td>
</tr>
<tr>
<td>glucocorticoid</td>
<td>rs2229288</td>
<td>osteonecrosis</td>
<td>diverse (USA)</td>
<td>ZFHX3</td>
<td>16:72794405</td>
<td>0 0 0.5</td>
<td>(65)</td>
</tr>
<tr>
<td>mercaptopurine</td>
<td>rs116855232</td>
<td>dose tolerance</td>
<td>diverse (USA)</td>
<td>NUDT15</td>
<td>13:48045719</td>
<td>9.5 0 0.2</td>
<td>(67)</td>
</tr>
<tr>
<td>cisplatin</td>
<td>rs62280356</td>
<td>ototoxicity</td>
<td>European (USA)</td>
<td>WFS1</td>
<td>4:6274903</td>
<td>0.3 17.6 22.9</td>
<td>(75)</td>
</tr>
<tr>
<td>melphalan (alkylating)</td>
<td>rs1426765</td>
<td>oral mucositis</td>
<td>European (USA)</td>
<td>Intergenic</td>
<td>3:25976116</td>
<td>0 0.8 14.4</td>
<td>(72)</td>
</tr>
<tr>
<td>melphalan (alkylating)</td>
<td>rs6804277</td>
<td>oral mucositis</td>
<td>European (USA)</td>
<td>Intergenic</td>
<td>3:25977271</td>
<td>0 10 12</td>
<td>(72)</td>
</tr>
<tr>
<td>melphalan (alkylating)</td>
<td>rs1940228</td>
<td>oral mucositis</td>
<td>European (USA)</td>
<td>Intergenic</td>
<td>11:103004647</td>
<td>0 6.1 1.7</td>
<td>(72)</td>
</tr>
<tr>
<td>melphalan (alkylating)</td>
<td>rs948695</td>
<td>oral mucositis</td>
<td>European (USA)</td>
<td>Intergenic</td>
<td>11:102990584</td>
<td>0 32.2 1.7</td>
<td>(72)</td>
</tr>
<tr>
<td>oxaliplatin (platinum)</td>
<td>rs10486003</td>
<td>neuropathy</td>
<td>East Asian (Korea)</td>
<td>Intergenic</td>
<td>7:97600466</td>
<td>23.3 0 10.2</td>
<td>(73)</td>
</tr>
</tbody>
</table>

Mapes et al (2017)
1000 Genomes Project
1000 Genomes Project

Super Populations
- East Asian (EAS)
- European (EUR)
- African (AFR)
- Native American (AMR)
- South Asian (SAS)

Number of Variants
- 81,443,074 variants
Admixture

Two Colombian genomes

Admixture mapping reveals chromosome 6 association between local AM ancestry and ER+ breast cancer

Fejerman et al (2012)
Breast Cancer Risk

Global and Local ancestry explain the SNP association
The Native American ancestry is protective

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>95% CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global IA ancestry</td>
<td>0.31</td>
<td>0.18–0.54</td>
<td>3.47 × 10^{-5}</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global IA ancestry</td>
<td>0.55</td>
<td>0.29–1.01</td>
<td>0.056</td>
</tr>
<tr>
<td>Local IA at 6q25</td>
<td>0.55</td>
<td>0.42–0.72</td>
<td>1.87 × 10^{-5}</td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global IA ancestry</td>
<td>0.55</td>
<td>0.30–1.02</td>
<td>0.06</td>
</tr>
<tr>
<td>Local IA at 6q25</td>
<td>0.68</td>
<td>0.50–0.91</td>
<td>0.009</td>
</tr>
<tr>
<td>rs140068132</td>
<td>0.63</td>
<td>0.50–0.80</td>
<td>1.6 × 10^{-4}</td>
</tr>
</tbody>
</table>

Fejerman et al (2014)
Outline

• Methods

• Self-Reported vs Molecular Ancestry

• Accuracy of Exome Data

• Summarizing cohort diversity
Study/Cohort selection

• Technical eligibility
 – WGS, WES, RNA-Seq, Genotyping

• Regulatory eligibility
 – General Research use (the best) or
 – No explicit barriers
 • Authorizes ancestry analysis
 • Authorizes analysis outside disease areas
 • OK with IRB exemption

• Not too fragmented
 – Some cohort are meta-cohort with different rules
 • TOPMED = 16 different cohorts and thus authorizations
<table>
<thead>
<tr>
<th>PHS</th>
<th>Name</th>
<th>Category</th>
<th>N</th>
<th>Access Granted</th>
</tr>
</thead>
<tbody>
<tr>
<td>phs000178.v9.p8</td>
<td>TCGA - The Cancer Genome Atlas</td>
<td>GRU</td>
<td>357</td>
<td>Yes*</td>
</tr>
<tr>
<td>phs000677.v1.p1</td>
<td>APOBEC Cytidine Deaminase Mutagenesis Pattern is Widespread in Human</td>
<td>GRU</td>
<td>5427</td>
<td>Yes*</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phs000147.v3.p1</td>
<td>CGEMS Breast Cancer</td>
<td>GRU</td>
<td>2576</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000935.v1.p1</td>
<td>CSER: The CHOP/UPenn Pediatric Genetic Sequencing Project</td>
<td>GRU</td>
<td>159</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000958.v1.p1</td>
<td>CSER: The MedSeq Project</td>
<td>GRU</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000999.v1.p1</td>
<td>CSER: Clinical Sequencing in Cancer: Clinical, Ethical, and Technological Studies</td>
<td>GRU</td>
<td>131</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000673.v1.p1</td>
<td>CSER: Exploring Precision Cancer Medicine for Sarcoma and Rare Cancers</td>
<td>GRU</td>
<td>11</td>
<td>Yes</td>
</tr>
<tr>
<td>(phs001089.v2.p1</td>
<td>CSER: Genomic Diagnosis in Children with Developmental Delay</td>
<td>GRU</td>
<td>835</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000827.v3.p1</td>
<td>CSER: NCGENES (North Carolina Clinical Genomics Evaluation by NextGen Exome Sequencing)</td>
<td>GRU</td>
<td>592</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000750.v1.p1</td>
<td>Genomic Origins and Admixture in Latinos (GOAL)</td>
<td>GRU</td>
<td>271</td>
<td>Yes</td>
</tr>
<tr>
<td>(phs000424.v6.p1</td>
<td>Genotype-Tissue Expression (GTEx) Common Fund Project</td>
<td>GRU</td>
<td>572</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000925.v1.p1</td>
<td>PAGE: The Charles Bronfman Institute for Personalized Medicine (IPM) BioMe Biobank</td>
<td>GRU</td>
<td>13067</td>
<td>Yes</td>
</tr>
<tr>
<td>(phs000442.v1.p1</td>
<td>Drug Resistant Hypertension in African Americans' Exome</td>
<td>GRU</td>
<td>91</td>
<td>NO</td>
</tr>
<tr>
<td>phs000518.v1.p1</td>
<td>NHLBI GO-ESP: Family Studies (Idiopathic Bronchiectasis)</td>
<td>GRU</td>
<td>24</td>
<td>NO</td>
</tr>
<tr>
<td>phs000354.v1.p1</td>
<td>NHLBI GO-ESP: Family Studies (Pulmonary Arterial Hypertension)</td>
<td>GRU</td>
<td>12</td>
<td>NO</td>
</tr>
<tr>
<td>(phs000422.v1.p1</td>
<td>NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Asthma)</td>
<td>GRU</td>
<td>191</td>
<td>NO</td>
</tr>
<tr>
<td>(phs000254.v2.p1</td>
<td>NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Cystic Fibrosis)</td>
<td>GRU</td>
<td>242</td>
<td>NO</td>
</tr>
<tr>
<td>phs000291.v2.p1</td>
<td>NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Lung Health Study of Chronic Obstructive Pulmonary)</td>
<td>GRU</td>
<td>337</td>
<td>NO</td>
</tr>
<tr>
<td>phs000290.v1.p1</td>
<td>NHLBI GO-ESP: Lung Cohorts Exome Sequencing Project (Pulmonary Arterial Hypertension)</td>
<td>GRU</td>
<td>96</td>
<td>NO</td>
</tr>
<tr>
<td>phs001026.v1.p1</td>
<td>CSER: Incorporation of Genomic Sequencing into Pediatric Cancer Care</td>
<td>GRU</td>
<td>125</td>
<td>NO</td>
</tr>
<tr>
<td>phs000812.v1.p1</td>
<td>Characterizing Genetic Susceptibility to Breast and Prostate Cancer - BPC3</td>
<td>GRU</td>
<td>1054</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000306.v4.p1</td>
<td>GENEVA Prostate Cancer</td>
<td>GRU</td>
<td>4642</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000413.v2.p1</td>
<td>St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project (PCGP): Somatic Mutations in Pediatric AML FAB-M7 Subtype by Whole Transcriptome Sequencing</td>
<td>GRU</td>
<td>15</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000414.v1.p1</td>
<td>St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project (PCGP): Whole Genome Sequencing of Core Binding Factor Acute Myeloid Leukemia</td>
<td>GRU</td>
<td>17</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000409.v1.p1</td>
<td>St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project (PCGP): Whole Genome Sequencing of Childhood Medulloblastoma</td>
<td>GRU</td>
<td>93</td>
<td>Yes</td>
</tr>
<tr>
<td>phs000341.v2.p1</td>
<td>St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project: Whole Genome Sequencing of Childhood Hypodiploid Acute Lymphoblastic Leukemia</td>
<td>GRU</td>
<td>241</td>
<td>Yes</td>
</tr>
</tbody>
</table>

26 requested, 12 granted, 7 rejected, 7 pending
Calculate maximum likelihood estimates (MLE) of each reference population using Broyden-Fletcher-Goldfarb-Shannon (BFGS) optimization algorithm
Log-Likelihood model - iAdmix

q_{ij} denote the allele frequency of the a allele at the i-th SNP in population j

a_j represent the admixture proportion for the j-th population and $A=[a_1,a_2,...,a_k]$ be the vector of admixture coefficients

\[
 f_i = \sum_{j=1}^{k} q_{ij} a_j
\]

weighted allele frequency at SNP i given the allele frequencies and admixture proportions

\[
p(G_i|f_i) = \begin{cases}
(1 - f_i)^2 & \text{if } G_i = 0 \\
2f_i(1 - f_i) & \text{if } G_i = 1 \\
f_i^2 & \text{if } G_i = 2
\end{cases}
\]

probability if observing the genotype G_i at site i

\[
 L(A) = \sum_{i=1}^{n} \ln(Pr(G_i = g_i|f_i))
\]
given vector of admixture proportions, the log-likelihood of the observed genotypes g for an individual

GOAL: Determine the vector $A=[a_1,a_2,...,a_k]$ of admixture proportions that maximizes $L(A)$
• Methods

• Self-Reported vs Molecular Ancestry

• Accuracy of Exome Data

• Summarizing cohort diversity
TCGA self-reported race

Using SNP6 affymetrix array to call molecular ancestry and admixture
Methodology

- Using SNP6 affymetrix array to call molecular ancestry and admixture (iadmix)
- Defining dominant ancestry (fraction > 0.8)
- Defining admixed (max < 0.8)
- 6 possible dominant
 - EUR
 - AFR
 - EAS
 - SAS
 - AMR
 - admixed
Matching

- White: >N EUR
- Black: >N AFR
- Asian: >N EAS+SAS
Dominant (0.8) Ancestries

- **Asian**
 - Admixed
 - EUR
 - AFR
 - EAS
 - SAS
 - AMR

- **Black**
 - Admixed
 - EUR
 - AFR
 - EAS
 - SAS
 - AMR

- **White**
 - Admixed
 - EUR
 - AFR
 - EAS
 - SAS
 - AMR

- **Hispanic**
 - Admixed
 - EUR
 - AFR
 - EAS
 - SAS
 - AMR
Admixed people tend to self report as white, not Hispanic.
Black

black
White
Hispanic

race
- american indian or alaska native
- asian
- black or african american
- native hawaiian or other pacific islander
- not reported
- white

ethnicity
- hispanic or latino
Outline

• Methods

• Self-Reported vs Molecular Ancestry

• Accuracy of Exome Data

• Summarizing cohort diversity
Diverse Exomes

- Selected 100 cases from diverse Race/Ethnicities
- Called variants using FreeBayes pipeline (Marth lab)
- Filtered for dbSNP and high quality/coverage
WXS variants

~20000 dbSNP variants per exome
WXS and SNP array lead to identical diversity estimates
Comparing 1KG Ancestry Estimates

- EUR
- EAS
- AMR
- AFR
- SAS

Graphs showing the comparison of ancestry estimates for different populations.
Comparing Dominant Ancestry

At 80% dominance threshold, ~30% of the subjects are misclassified
Outline

• Methods

• Self-Reported vs Molecular Ancestry

• Accuracy of Exome Data

• Summarizing cohort diversity
Cumulative Fraction by Disease
Dominant (0.8) Ancestries

TCGA

COAD

BRCA

LUAD

- admixed
- EUR
- AFR
- EAS
- SAS
- AMR
Entropy

- Diversity:
 - Normalized Entropy over N primary (>80%) groups

\[
E = 0.92
\]

\[
E = 0.18
\]
Dominant Ancestries & Entropy

TCGA E=0.75

COAD E=0.69

BRCA E=0.81

LUAD E=0.63

Legend:
- admixed
- EUR
- AFR
- EAS
- SAS
- AMR
Dominant Ancestries & Entropy

- Asian: dominant ancestry, Entropy = 0.50
- Black: dominant ancestry, Entropy = 0.42
- White: dominant ancestry, Entropy = 0.46
- Hispanic: dominant ancestry, Entropy = 0.89

Legend:
- admixed
- EUR
- AFR
- EAS
- SAS
- AMR
GWAS cancer

Repositories

- SRA (16,001)
- OmicsDI (9,952)
- BioProject (9,170)
- ArrayExpress (8,979)
- PDB (1,046)
- GEO (443)
- dbGaP (364)
- CIL (340)
- Dryad (309)
- GEMMA (285)

Disease

- Breast Neoplasms (49)
- Neoplasms (47)
- Lung Neoplasms (34)
- Prostatic Neoplasms (31)
- Lymphoma, Non-Hodgkin (28)
- Melanoma (23)
- Uterine Cervical Neoplasms (20)
- Leukemia, Myeloid, Acute (18)
- Colonic Neoplasms (17)
- Lymphoma, Large B-Cell, Diffuse (17)

Study Types

- Case Set (75)
- Case-Control (69)
- Cohort (44)
- Tumor vs. Matched-Normal (20)
- Longitudinal (16)
- Family (6)
- Nested Case-Control (4)
- Whole Genome Sequencing (4)
- Control Set (3)
- Longitudinal Cohort (3)

Study Group

- General Research Use
- Research related to adult diseases and methods (CADM)
- Cancer in all age groups, other diseases in adults only, and methods
- Pancreatic cancer only
- Pancreatic cancer only and GHP institutional certification
- Pancreatic cancer only and JHU institutional certification
- Disease-Specific (Breast, Ovarian, or Endometrial Disease, MDS)
- Cancer in all age groups, other disease in adults only and methods
GWAS cancer search results

Repositories
- SRA (16,001)
- OmicsDI (9,952)
- BioProject (9,170)
- ArrayExpress (8,979)
- PDB (1,046)
- GEO (443)
- dbGaP (364)
- CIL (340)
- Dryad (309)
- GEMMA (285)
- More...

Disease
- Breast Neoplasms (49)
- Neoplasms (47)
- Lung Neoplasms (34)
- Prostatic Neoplasms (31)
- Lymphoma, Non-Hodgkin (25)
- Melanoma (23)
- Uterine Cervical Neoplasms (20)
- Leukemia, Myeloid, Acute (18)
- Colonic Neoplasms (17)
- Lymphoma, Large B-Cell, Diffuse (17)

Study Types
- Case-Control
- Nested Case-Control

Study Group
- General Research Use
- Research related to adult diseases and methods (CADM)
- Cancer in all age groups, other diseases in adults only, and methods
- Pancreatic cancer only
- Pancreatic cancer only and GHP institutional certification
- Pancreatic cancer only and JHU institutional certification
- Disease-Specific (Breast, Ovarian, or Endometrial Disease, MDS)
- Cancer in all age groups, other disease in adults only and methods

Ancestry
- Main Ancestry Fraction
- EUR: 0.50
- AFR
- EAS
Conclusions

• Global and Local Ancestry are critical covariates in genetic studies
• Self reported ancestry is not a reliable meta-data
• Exome and SNP arrays provide consistent estimates of ancestry
• Entropy and major/dominant ancestry are concise ways to summarize cohort diversity
Acknowledgments

Jihoon Kim
Max Xu
Lucila Ohno Machado

BioCADDIE team
BioCADDIE funding
Clinical and Translational Research Institute
iDASH cloud